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1. INTRODUCTION

In this paper we shall discuss unconditional convergence of some simple splitting methods for the
numerical solution of initial boundary value probl for partial differential equations (PDEs).
Discretization in space of such PDE problems leads to lacge systems of ordinary differential equations
(ODEs)

W)=fu()) O<t<T), u@=eo a.n

where the vector function f contains discretized space derivatives. The boundary conditions arc also
incorporated in /. Assume that f can be decomposed into two more simple functions f; aud /3,

SeN=HE ), 1.2
as it is often the casc for PDE probems with two space dimensions.
Standard implicit methods 10 spproximate (1.1) require the solution of large systeros of algeh
q) lving the whole functi J- A well-known hod is the implicit midpoint rle
111
Uy 11 =ty flat T 7“n+-2-“l+l) (n=0,1,2,..), .3

also called the Crank-Nicholson method in PDE literature. The vectors u, approximate the exact sofu-
tion u of (1.1 at £, =nw, 7>0 being the stepsize in time. Method (1.3) is of 2-d order in the classical
ODE sense,

In terms of computational effort it can be more attractive 10 exploit the splitting (1.2). Yanenko
{13] introduced the following Locally One Dimensional (LOD) method, which is based on the implicit
midpoint rule,

1 1 1
l‘u+-§-=“u+"’fl(‘u+ 7T Tt T+t (1.42)
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Uy 41 Ttk F T2l Ttk F Thet1) (1.4b)

(for n=0,1,2,...). The vector ;L is an intermediate vector, as in Runge-Kutta methods, to which we
do not attach physical meaning. If f; and f; have a more simple structure than f, the computation of
g 41 from (1.4) can be done more efficiently than from (1.3). However, the LOD method (1.4) will
have 2-d order only if f},f2 are lincar and ¢ ting; in more general situations it will have mercly
1-th order, due to lack of symmetxy, (6].
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Symmetry can be restored by interchanging after each step fy and f;. This idea, which originates
with Marchuk (8}, leads 10 the following modification,
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(for n=0,2,4,...). This method is again of 2-d order, and it requires the same amount of work as (1.4),
Au first sight method (1.5) seems superior to (1.4). As we shall see this conclusion is not justified,
The reason for this is that the classical order concept for ODEs, to which we referred to until now, is
the order of consistency for nonstiff ODEs where f satisfies & Lipschitz condition with moderate
Lipschitz constant L and 7L is assumed to be sufficiently small. In our situation, where (L.1) or-
ginates from a PDE problem, the Lipschi L will in negative powers of the meshwidi
in space k. As a consequence, L will be very large for fine space grids and thedndnlnaavem
theory cannot be applied. Infncl,thcordaofﬂwdimﬁnﬁonmonmybelﬂecledhymm
hwidths A, a ph ulledordernducﬂm.mﬁﬂmollhcduﬁulorduooneeptwmu
demonstrated by means of & simple linear parabolic model problem. It should be goled that both
LOD methods (1.4) and (1.5) are stable for much more general problems, sec[11].

Order reduction for PDE problems does not accur exclusively with the LOD methods, but also with
the impHicit midpoint rule and other Runge-Kutta methods (1, [3], (7}, [10], [12] and the Peaoequn.
Rachford ADI method [S}. An analysis similar to the one that will be presented here can be givea for
other splitting methods as well. We will consider the LOD methods (1.4), (1.5) since varions aspects
of order reduction show up for these two methods in a relatively simple way,

2. PRELIMINARIES
The discretization errors of the LOD schemes will be analyzed for parabolic mode! problems on the
unit rectangle 2=(0,1)?

3 |2, @

-a7U(x‘y.l)~— 3:’"*? UGy ) +Glxy,1) (for (xy)€0, 0<r<T),

Ulx, 0) given (for (ey)e), Uleg,)=0 (for (x,y)€d0, 0<1<T) . @0
Note that we deal here with homog, Dirichlet boundary diti The LOD schemes can also
be applied for time dependent boundary "'v,,butitislasdnrtbenhownmboundny
conditions for the intermediate vectors uy+L should be obtained (see [9) for a discussion in case no

source tem G is present).
Standard discretization in space with finite differences on a uniform space mesh {3, with meshwidth
h=1/m+1in both directions yields the ODE system

A=A () +g() O<I<T), u(0) given @2
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of dimension M =m?. The vector u(r) has components w,(f) (1+<i,j <m) approximating U(ih,jh,1},
and 4 =A;+A4; as given by the stencils

As=h™?

1 0
I ~4 1 |, A=kl -2 1
1 0

1

JAz=h~0 -2 0 . 2.3
1

The matrix A is penta-diagonal, whereas A, A, which approximate 32/8x? and 8%/8y2, respectively,

are both tri-diagonal. These matrices are all sy ic, negative definite and they with each

other, The source term g in (2.2) is the restriction of G to the space grid; it can be distributed as

£1(N=6g(t), g2(0=(1-8)g(n) (24)
with #€[0,1] (for example 8= 1/2). We thus obtain a aystem (1.1), (1.2) with

=4y +g =12, @5)

Let |l - || denote the discrete L,-norm, i.e.,
By i=a 3 oyl (for v=(v)eR™).
W=l

The function =/, +f, satisfies a Lipschitz condition with constant La«8h~? (the most negative

igenvalue of A is approximately —8k ~2). If #=0 is small we thus have a very large Lipschitz con-
stant and the classical convergence theory is not valid anymore. In fact, as we shall see, the conver-
genoe behaviour in time for A0 will be different from that for fixed h=h, bounded away from zero.
The main difference between these two cases is that terms like | 4vl] need not be bounded for k[0,
even if v is the restriction o the space grid of 2 smooth function ¥(x,y). For example, if eeR¥ is the
vector with all componeats equal to 1, then (de), =0 for gridpoints (th, j) in the interiar of the grid,
but (4e);= —h ~* on the gridpoints adjacent to 3Q; wenty HAell~h =2,

By ll-Il we shall also denote the induced spectral norm for M XM matrices. Let
r(z)=(l-—-%z)"‘ (1+'%‘.z) be the stability function of the implicit midpoint rule, Since A, 4, are

negative definite it can be easily shown that for arbitrary >0
I I=Teap=t i<, Urted) <1 (=12). 2.6
Let Uy(¢) be the restriction to the space grid @, of the exact PDE solution, and let
()= ThO)=flt, Ui(n)) (0<t<T). @mn

This &) measures the errar due {0 space discretization. For our mode! problem it is O(#?). Further we
introduce the notation

FO=f U, O<I<T). 28)

Note that || Fy()ll will be bounded uniformly in A, provided U is a smooth solution, despite the fact
that f; contains negative powers of h.
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‘We shall be concerned with bounds for the full global errors

Ut~y | KCP¥+C* max || o) 1l 29
01 s,
with C,C'>0 independent of 7 and . So, in particular, C is not allowed to depend on L

(which is ~& ~2). It will tumn out that this requirement may affect the order in time p.

3. RECURSIONS FOR THE GLOBAL ERRORS
Let ¢, = Uy(t,) — u, denote the global discretization errors. For the LOD method (1.4) it can be shown
{4] that the global errors satisfy the recursion

a1 =R 6 +8 (1=0,1,2,..) @0
where ¢ =0 and

R=r(zAy) r(zdy) , (3.2

8y =~ 1d Y MU~ 51D (G Fa—AsF ) ey +O()) 63

Here Fy,Fy and a; are cvaluated in r,+%r and the O(r*) term is genuinely 3-th order (it can be
bounded in norm by C7* with C>0 only depending on smoothness of the exact PDE solution U, so
that no negative powers of & are hidden). As we soc¢ from (3.1) the global error at time #,.; consists
of two contributions: (i) the exror ¢, at time ¢, premultiplied by the eomyunion (or stability-) matrix
R, and (ii) an sdditional error 8, introduced in the step from 7, 10 1,,4;. This 8, can be considered as
1 local discretization error. (It should be noted that 8, differs from the usual local discretization error
which is obtained by substituting the exact solution in (1.4).)
For stationary solutions, where 0= ), = F, + F; +a, it follows that

b=t~ 3740 = T4 A F + O =

=R ~IFy+0(r)a; . . Ge
The O(r%) term in (3.3) has cancelled due to the fact that the derivates of Uy all vanish. Stationary
problems are cousidered here only as the most simple case to analyse the order in time of the
methods. The LOD methods are not particularly suited if one only wants to find stationary solutions
via time marching.
For the modified method (1.5) we obtain in the same way
(1= R +8y Guu2=Re 11+ (1=02,4,..) ’ (33)
where 8,4 differs from 8, ., as given by (3.3), only in that the indices 1 and 2 are interchanged
(simoe Ay and A, commute, R does not have to be replaced by an R’). Taking the two relations in
(3.5) together, it follows that

G12=Rle+A, A=RE,+8,,1 (1=0,24,.). a8

The vestor 4, thus stands for the discretization error which is introduced in one single step of the
process (1.5).
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Yf we consider again & stationary solution U =0, we see from (34) that
¥yor =ik ~ [1Fy + OGNy = = TR NP2+ O »
and therefore

By =FAR—IPFa+ 0 . X))

4. LOCAL ERROR BOUNDS

Order reduction for the LOD methods can already be observed for the simple casc where we deal
with & stationary solution. Omitting the space errors, the errors per step of the LOD methods (1.4),
(1.5), respectively, are then given by

8,=tAR=1IFs, &=3AR-IFF3.
Now, on a fixed space grid (h=hy>0) we have Il R —1Ill =0(r), and thus

18,1 =0, I & Il =06

These bounds are in agr ¢ with the classical ervor bounds for nonstiff ODEs. They are not valid
if both {0 and 4 }0: we have

[R=TFy=af( ~ 314 )" 740 HAF3),
§=taa ) T =AD" I <L but [AF; 1l 0(D) if IO,

due 1o the fact that F; is in general not zero near the boundaries.
It can be proved [4) that for arbitrary (time-dep dent) problems of our model class there exist
Co,Co'>0, independent of A, such that

I8, I <Cyr +Corlialty+3n) s : @
I8, I SCor +Co'r Il @t 39 11 @2

These bounds arc also valid if &0, but instead of 0, O(7) as on fixed space grids we only have
an O(r*'4) estimate for the temporal local errors. The bounds (4.1), (4.2) can be proved to be sharp,
for plc for stationary probl withr=h.m[4].$o.duewsmllmuhwidduﬂmeisnhxge
order reduction for the local eors.

Order reduction for Iocal errors of the LOD method (1.4) was discussed already in {13] and [5] for
the problems (2.1) with G =0 but with ﬁmeva:yingboundﬂyoondiﬁom.hwemhueitmy also
oocur from homogeneous boundary conditions.

5. GLOBAL ERROR BOUNDS
To estimate the global errors ¢, we use the error recursions (3.1), (3.6) and the fact that || R It =<1,
which guarantees stability.

First we consider the standard ¢h 10 obtain bounds for the lle,ll. If

123
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RO+, 18 1 <Co®*Y (for all j),
then
le Sl + Ul << B U+ N8 U+ -+ 18, | SnCorP*'<CoT .

For both LOD methods (1.4) and (1.5) it follows in this way that there are C, €'>0, independent of
A, such that

el <c7"‘+c'02-:7 () It 3.

The 7* term is of course disappointing compared with the order on fixed space grids. Since the
bounds (4.1), (4.2) aze known to be sharp this seems at first sight to be the best possible.

For method (1.4) however this result can be improved by taking into account cancellation and
damping cffects. This is casy to show for stationary problems where we have, omitting the space

erTors,

a=Ro-1+3HR-11F1,

G=TAT+R+ -+ +RV) R ~LIFy = SqRO-D)F,, 62
and thus

lell rll Fyll <Cr.

This can also be proved for non-stationary problems [4]: the global errors of the LOD method (14)
pplied to & problem (2.1) can be bounded by

e It <C1-+C'012;l<xrll Ol 5.3)

with C, C’>0 independent of h. Thus, although the local errors 8, do suffer from an order reduction,
we see that the contribution to the global error of time discretization is still of order 1, as on fixed
space grids. In other words, the order rednction is annihilated in the transition from local to global
efrors,

For the modified method (1.5) the situation is different. When applied to a problem with stationary
solution the error recursion for this method reads

=Ry + MR -IPF,,
where again space errors are omitled. Procoeding as above we can obtain
Q=3 +RME - + R R -IPF,, 54

but now there is no cancellation of terms as in (5.2). In fact, it can be proved {4] that the global errors
of method (1.5) fora h stationary solution satisfy

He Il 3CT'2 for 1=h, mh=1>0 (5.5)
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with C>0 independent of r and h. Hence, the error bound (5.1), which is too pessimistic for method
(1.4), is nearly optimal for method (1.5). (The question whether the order is -:— or -;— or in between, is
not so relevant since the convergence behaviour is very dissppointing anyway.) For method (1.5),
which is 2-d order on fixed space grids, there is a strong order reduction for the global errors.

As a numerical illustration we consider our model problem (2.1) with T =2 and stationary solution

Ulx,y,)=x(A~x) y(1—y) (16+y) .

The solution is chosen such that no space errors are present, and the source texm G is adapted to the
solution. Below we have listed the global errors |l «,/f at the endpoint nr=T=2 for & fixed grid h =hq
and for 7/ =const. These numerical results nicely illustrate the theory, On fixed space grids method
(1.5) will b more te than method (1.4) for decreasing 7, but if both = and A tend to0 0
method (1.4) is the better one.

T Yy n Yw Yw e

(14) | 47E1 23E1 .12E1 S9E2 29E2
(15 | 69B1 3R2E1 J0E!1 27E2 68E3

TaBLE 5.1. Global errors for the LOD methods (1.4), (1.5) on a fixed space grid A =1/;.

T 71 Yn Ve Y Yo

(14) | 47E-1 39BE1 20E1 .I0E1 53E2
(15) | 69E1 63IB1 45E1 31E1 22E1

TABLE 5.2. Global errors for the LOD methods (1.4), (1.5) for h=2r.

ACKNOWLEDGEMENT
The suthor is grateful to J. Blom for carrying out the numerical experiment.

REFERENCES

[1} BrenNER, P., CRoUZEIX, M., THOMEE, V., Single step methods for inkomnogeneous linear differential
equations in Banach space. RAIRO Nurmer. Anal. 16 (1982), pp. 5-26.

[2] Dexxex, K., VErwrn, 1.G., Stability of Runge-Kutta methods for stff nonlinear differential equa-
tions. North-Holland, Arsterdam - New York - Oxford, 1984.

{3] Frank, R., ScHNEWD, J., UmBERMUBER, CW., Order results for implicit Runge-Kutta methods
applied to stiff systems. SIAM J. Numer. Anal, 22 (1985), pp. 515-543.

[4] HuNDsDORFER, W.H., Uniform convergence of some Crank-Nicholson LOD methods for initial-
boundary value problems. To appear.

{5] HuNDSDORFER, W.H., VERWER, J.G,, Stability and convergence of the Peaceman-Rachford ADI
method for initiol-boundary value problems, To appear in Math. Comp. (1989).

[6] HouwsN, P.J. VAN DER, VERWER, J.G., One-step splitting methods for semi-di parabolic equa-
tions. Computing 22 (1979), pp. 281-309.

231



[7] KRAAUEVANGER, J.FB.M., B-convergence of the impliclt midpoint rule and the trapezoidal rule.
BIT 25 (1985), pp. 652666,

[8] MARCHUK, G.1, Methods of numerical mathematics (2-d ed). Springer Verlag, New York -
Heidelberg - Belin, 1981,

{91 Le VEQue, R, Intermediate boundary conditions for LOD, ADI and approximate factorization
methods. ICASE report 85-21, NASA Langley Rescarch Centre, 1985.

[10] SANZ-SERNA, JM., VERWER, J.G., HUNDSDORFER, W.H., Convergence and order reduction o
Runge-Kutta schemes applied to evolutionary partial differential equations. Numer. Math. 50
(1987), pp. 405418,

(11] VERWER, J.G., Contractivity of locally ane-dimensional splitting methods. Numer, Math. 44 (1984),
pp. 247-259.

{12) VERwWER, J.G., Convergence and order reduction of diagonally implicit Runge-Kutta schemes in the
method of lines. Proc. Dundee Conf., (D.F. Griffiths & G.A Watson, ¢ds), Pitman Research
Notes in Mathematics Series 140 (1986), pp. 220-237,

[13) YANENKO, N.N., The method of fractional steps. Springer Verdag, Berlin - Heidelberg - New
York, 1971.

232



